FaSTAR-Moveを用いた eVTOLの空力干渉の 数値解析

横浜国立大学 北村研究室 鈴木 恵太,古澤善克,坂爪竣哉,原優花,北村圭一

●プロペラ・固定翼・胴体の空力干渉(eVTOL)

- ●背景·目的
- ●研究手法
- ●結果(時間平均場)
- 同一の回転翼計算における
 rFolw3DとFaSTAR-Moveの比較
- ●当研究室における rFolw3D・FaSTAR-Moveの活用事例紹介

●プロペラ・固定翼・胴体の空力干渉(eVTOL)

●結果(時間平均場)

同一の回転翼計算における
 rFolw3DとFaSTAR-Moveの比較

●当研究室における rFolw3D・FaSTAR-Moveの活用事例紹介

背景・目的

プロペラ・固定翼間の空カ干渉

Veldhuisの研究 [3] によると 位置関係が固定翼空力に影響

結論 プロペラを翼端(tip)に配置したとき 固定翼は 揚力C₁ 最大

背景・目的

プロペラ・固定翼間の空力干渉 Veldhuisの研究 [3] によると 位置関係が固定翼空力に影響

背景・目的

①胴体を含めたプロペラ空力干渉メカニズム

対象:胴体・固定翼・プロペラの3者モデル

②プロペラ位置が機体全体空力に及ぼす影響

プロペラのスパン(水平横)方向位置に着目

研究手法 | 計算対象, 条件

計算対象 / 半裁モデル		ー様流マッハ数	0.137		
				Re数(固定翼C基準)	3.1×10 ⁶
the second	B100	B50		胴体	
	496.2 mm (= r)	0.50×1		全長L	4000 mm
				最大直径 D	682.7 mm
	翼弦長25%位置	- Ψ.		固定翼 (NACA0012)	
	B80 0.80×B	B30 0.30×B	スパン長 2B	5954.2 mm	
			コード長 C	992.4 mm	
				取り付け迎角	8 deg.
				プロペラ	
	固定翼スパン長I	3 の		ブレード枚数	4枚
100%, 80%, 50%, 30%		プロペラ半径 r	496.2 mm		
	のフロペラ位置を	こそれそれ	調宜	コード長 c ₇₅	118.2 mm

研究手法 | ソルバ

FaSTAR-Moveを用いた数値計算

背景格子(約6000万点)

●抗力C_D

プロペラ・固定翼・胴体の空力干渉(eVTOL)

同一の回転翼計算における rFolw3DとFaSTAR-Moveの比較

当研究室における
 rFolw3D・FaSTAR-Moveの活用事例紹介

[5] Caradonna, F, "Performance Measurement and Wake Characteristics of a Model Rotor in Axial Flight", JOURNAL OF THE AMERICAN HELICOITER SOCIETY, Volume 44, Number 2, 1 April 1999, pp. 101-108(8)

計算格子 rFlow3Dのマニュアルに 則り作成した

格子点数

- ・ブレード格子
- ・背景格子(OBK+IBK) 約 1 億点
- ・IBK(内側背景格子)セルサイズ 0.15×c (c: ブレード翼弦長)

IBK∈

約100×2万点

rFlow3Dにて、十分に格子収束性が取れていることを確認済み 同じ格子データにて、FaSTAR-Moveで同様の計算を行った

OBK∉

可能な限り同一の手法を選択した

手法	rFlow3D	FaSTAR-Move	
数値流束スキーム	SLAU	SLAU	
空間高次精度化	物体格子:MUSCL (2nd) 背景格子:MUSCL FCMT (4th)	MUSCL (2nd)	
勾配計算法	_	Weighted-GG	
勾配制限関数	minmod	minmod	
粘性流束	2次精度中心差分	2次精度中心差分	
時間積分法	物体格子:LU-SGS(Dual-time stepping, 2nd) 背景格子:2段ルンゲクッタ法	LU-SGS(Dual-time stepping, 2nd)	
乱流モデル	SA-noft2	SA-noft2	

可能な限り同一の手法を選択した

手法	rFlow3D	FaSTAR-Move	
数値流束スキーム	SLAU	SLAU	
空間高次精度化	物体格子:MUSCL (2nd) 背景格子:MUSCL FCMT (4th)	MUSCL (2nd)	
勾配計算法	-	Weighted-GG	
勾配制限関数	minmod	minmod	
粘性流束	2次精度中心差分	2次精度中心差分	
時間積分法	物体格子:LU-SGS(Dual-time stepping, 2nd) 背景格子:2段ルンゲクッタ法	LU-SGS(Dual-time stepping, 2nd)	
乱流モデル	SA-noft2	SA-noft2	

CQ 0.001 0.0008 __ 0.0006 ک 0.0004 CQ r 0.0002 CQ_F 0 0 9000 10800 12600 14400 16200 18000 1800 3600 5400 7200 iterration [-]

CT 値の大きさ自体はやや一致 **CQ** 比較的大きな差

FaSTAR-Move 一周(3600step)ごとに値が振動

Q値(Q=0.01等値面)

FaSTAR-Move Q値を過小に評価 →空間精度の差, 非構造格子が原因か

[6] Tsoutsanis, Panagiotis, et al. "Comparison of structured-and unstructured-grid, compressible and incompressible methods using the vortex pairing problem." *Computer Methods in Applied Mechanics and Engineering* 293 (2015): 207-231.

●プロペラ・固定翼・胴体の空力干渉(eVTOL)

●当研究室における rFolw3D・FaSTAR-Moveの活用事例紹介

事例|同軸反転ロータの振動

目的 低レイノルズ数領域における ・空力干渉が振動に与える ・ロータ間距離による振動の	る同軸反転ロータの 影響 の変化	空力解析	
条件			
翼型	平板翼	外側背景桥	
ロータ半径R [m]	0.137		
ロータ直径D [m]	0.274		内側背暑格子
ロータ間距離d [m]	0.1D,0.2D,0.3D		
回転速度 [rpm]	500		
レイノルズ数(75%位置)	1.1×10^{4}		R
ピッチ角[deg.]	15		物休格子
翼端マッハ数	0.02108		

事例 | 同軸反転ロータの振動

結果

- ・上側ロータではロータ間距離が大きくなるにつれて振動が減少
- ・下側ロータでは振動が単調に減少する傾向は確認されなかった
- ・圧力場の干渉による影響、後流の干渉による影響を確認

事例 | 回転翼の圧縮性効果

<u>風洞スケール・実機スケールを比較し、プロペラ翼端付近の圧縮性の影響を調査</u>

<u>風洞スケール・実機スケールを比較し、プロペラ翼端付近の圧縮性の影響を調査</u>

✓ 実機スケールでは圧縮性が剥離せん断層を安定化させ、 プロペラの振動が弱まることを明らかにした.

事例 | プロペラ・固定翼干渉

・プロペラ・固定翼統合モデルにおける空力干渉の数値解析 ソルバ : Fastar-Move

AIAA workshopで取り上げられた、プロペラ・固定翼における空力干渉を計算

(Hooker, J et al.: Overview of Low Speed Wind Tunnel Testing Conducted on a Wingtip Mounted Propeller for the Workshop for Integrated Propeller Prediction, AIAA Paper 2020-2673, 2020.)

プロペラ後流中の固定翼表面圧力を良好に再現

事例 | ロケットの帰還飛行

背景格子	計算条件	静的計算	動的計算
105 <i>L</i>	マッハ数	0.03	32
	レイノルズ数 4.3×10 ⁵		10 ⁵
移動格子	迎角	0~180度の範囲に て10度刻み	0~180度の 連続変化
	転回速度	0[deg/sec] <mark>k</mark> =0[-]	16.7[deg/sec] <mark>k</mark> =0.007[-]
70L	– ノーズエント!	ノー 機体全長L 転回中心位置 解析ソルバ	:570[mm] 置 :0.6 <i>L</i> :FaSTAR-Move
	Main engine re-ignition and Landing	wer maneuver k:一様流速 本研究におい 一様流速の0	に対する転回速度 ナる転回速度は).7%にあたる

事例 | **ロケットの帰還飛行**

迎角90度において動的のみ双子渦が保持される →転回により前の迎角の流れ場の影響を受ける

Cp(pres.coef.) 0.0001

●プロペラ・固定翼・胴体の空力干渉(eVTOL)

●研究手法

●背景·目的

●結果(時間平均場)

同一の回転翼計算における
 rFolw3DとFaSTAR-Moveの比較

●当研究室における rFolw3D・FaSTAR-Moveの活用事例紹介

