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m Active control of vibration

Introduction: Active Control
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Introduction: History of the ACF
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Millott and Friedmann (1994)

elastic blade model and quasisteady Theodorsen aerodynamics
Milgram and Chopra (1995)

compressible unsteady aerodynamic model (Leishman)
Myrtle and Friedmann (1997)

new compressible unsteady aerodynamics (RFA Aerodynamics)

de Terlizzi and Friedmann (1999)
BVI vibration reduction

Depailler and Friedmann (2001)
reduce vibrations due to dynamic stall
Experimental studies (open loop and closed-loop)
Straub (1995), Fulton and Ormiston(1998), Koratkar and Chopra (2002)
Boeing Smart Material Actuated Rotor Technology (SMART)
MD-900 rotor with piezoelectrically actuated flap
Whirl tower tests performed (Oct. 2003)

BK117/EC145 with three identical adjacent piezoelectrically
actuated flaps is scheduled to fly in 2005
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" Introduction: Noise Control

m HHC and IBC algorithms developed for vibration reduction have
been adapted for noise reduction

m HHC For BVI Noise Reduction:
HART (1995)
wind tunnel test, scaled BO-105, open loop, 5-6dB reduction

m IBC For BVI Noise Reduction;

Wind Tunnel
s BO-105, NASA Ames 40x80’ (Jacklin,1995), open loop,
5-12dB reduction
s UH-60, NASA Ames 40x80’ (Jacklin,2002), open loop,
5-12dB reduction
Flight Test
s BO-105 (Bebesel, et al. - 2001,2002), open and closed loop,
4-6dB reduction
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Introduction: Simultaneous Control

m Brooks et al. (1990) observed increased vibration when using
open-loop HHC for noise reduction in the NASA Langley TDT.
m HART with 3/rev HHC
6dB noise reduction, 100% increase in vibratory loads
30% vibration reduction, 3dB noise increase
m NASA Ames BO-105 test with 5/rev IBC
Advancing side BVI noise reduced by 4dB
Vibratory loads increase by 150%
m Flight Tests of BO-105 with 2/rev IBC
6dB Noise reduction
150% increase in vibratory loads
m Limited cases of simultaneous reduction




“ Objectives of the Present Study

Explore the potential of BVI noise reduction as well as simultaneous
vibration and noise reduction using the ACF approach.

Determine and compare the effectiveness of the ACF in the closed
loop mode for noise and vibration reduction on two different rotor
configurations, namely, a four-bladed MBB BO-105 hingeless rotor
and a five-bladed MD-900 bearingless rotor.

Evaluate the effectiveness of passive methods on the vibration and
noise reduction using advanced geometry tips with anhedral and
dihedral, and compare them with the active approach.

I
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Examine a number of practical implementation issues associated
with the ACF system, such as the effects of practical saturation
limits, constant and 1/rev pitch inputs, and flap overhang.
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m Isotropic Blade Model (Millott & Friedmann, 1995)
Coupled flap-lag-torsion dynamics, with moderate deflections
Blade discretization using the Global Galerkin method

Free vibration rotating modes (3 flap, 2 lead-lag, 2 torsion)
MBB BO-105 hingeless rotor

m Composite Blade Model (Yuan & Friedmann, 1995)
Transverse shear deformation, cross-sectional warping, elastic coupling
Finite element discretization
Modal reduction based on 8 coupled rotating modes
Swept tips (tip sweep and dihedral)
MD-900 bearingless rotor N ERTIE AL NovDE
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m Blade sectional loads calculated using rational function
approximation (RFA) (Myrtle & Friedmann, 1997)

accounts for compressibility, unsteady effects, and time varying
freestream effects

accounts for the presence of the flap

m Extended for the computation of chordwise pressure distribution
(Patt, Liu & Friedmann, 2003)
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“"Model: Free Wake

m Wake analysis extracted from CAMRAD/JA (de Terlizzi & Friedmann,1998)
m Free wake geometry includes distortion of the wake due to
wake self-induced velocity (scully, 1975)

m Fundamental wake resolution restrictions removed
50 azimuthal resolution

m Dual vortex line model with

negative blade tip loading PRESENT SIMULATION
experimental evidence (HART) f TN
interaction with tip vortices I [ § ( ; J:
is accounted for DIRFCHON 1 {
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Dual Wake Structure Free Wake
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Model: Solution Procedure

Acoustic Module BVI Noise

B Modified version of WOPWOP (Brentner, 86) > FM‘H
fully flexible blade model
B BVI noise defined as 6th-40th harmonics of BPF

chordwise
pressure distribution
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Conventional HHC Saturation Limits on Flap Deflection:
m  Simple, one-step convergence _4° <5< 4° R —C I
Relaxed HHC - — Pwu
(Patt, Liu & Friedmann, AIAA 2004-1948) 0-
m  Control update is scaled by a relaxation factor | 5 |> 4 . Increase Cwu
m  Improved robustness, slower convergence |5 |< 49 Decrease C
; wu

Adaptive HHC

m  Online identification updates (Cribbs & Friedmann, 2001)

Cost Function: J = ZIQZk "'“IR“k Harmonic Flap Deflection:
m Four-bladed BO-105

T 2/rev, 3/rev, 4/rev, 5/rev
Zyp = {FHX Fav i Fiz Mg, My, M HZ} m Five-bladed MD-900

Noise Reduction: 2/rev, 3/rev, 4/rev, 5/rev, 6/rev
T

ZNR:{NHO6’NH07""’NH17} N max
S(w) =D [6y, cos(Nw) + 6y, sin(Ny)]
N=2

Vibration Reduction:

Simultaneous Reduction:

.
Log = {ZVR,ZNR} u= {5Nc , O Ns }T , N=2-N

max
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“Model Validation: HART

HART (1995)
m  Wind tunnel tests of a 40% dynamically and
Mach-scaled BO-105 rotor

m  BVI Noise carpet plots
Noise contour plots at 1.15R below hub
m Acoustic pressure time history

HART Experimental Result Simulation

HART Experimental Result
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“*Model Validation: MD-900

m Comparison with CAMRAD Il (straub & Charles, 2001)
Prescribed flap deflection &, = 2°cos(4y —240°)

M: T T . 407 . CURRENT SIMULATION - FLAP
CURRENT SIMULATION - BASELINE 2 = N \ /
104 = 1
g Z
2
O-6 CAMRAD || - FLAP
-2 : : : -80 : .
0 90 180 360 0 180 360
AZIMUTH |DEG.) AZIMUTH |DEG.}
Tip pitch deflection Torsional moment @ 0.4R
m Comparison of blade natural frequencies (/rev) with RCAS
(Rotorcraft Comprehensive Analysis System)
@ Oy O @ O3 @7y Oy /N
Current Simulation 0.654 1.043 2.573 3.488 4.472 5.667 7.270 25.70

RCAS 0.654 1.048 2.572 3.498 4.473 5.409 7.273 25.82
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““Results: Overview

m MBB BO-105
Vibration Reduction
Noise Reduction
Simultaneous Reduction
Effects of Constant and 1/rev Pitch Inputs

m MD-900
Effects of Flap Overhang
Vibration Reduction
Noise Reduction
Simultaneous Reduction
Effects of Swept Tips

T All results obtained with 4° saturation limits imposed



25 MichiganEngineering

m Four-bladed hingeless rotor

N, R(m) 1} CQ(RPM) C; c/R Orp
4 4.91 0.15 425 0.005 0.05098 6°

m Propulsive trim

. R ,
. e
6° descending angle i’"'"“‘”“ éﬂ/DD/—\:}
=20

{ L Onboard Microphones

m Single and dual servo flaps
— | Top View Advanding Side

Single Servo Flap e are
69% 75% 89% 95%
- [ 1]

 I—
Dual Servo Flap

0 Y/R
m Active control with 4° saturation

Vibration reduction
Noise reduction L
Simultaneous reduction . :
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m Vibration reduction with conventional HHC algorithm
46% reduction with single flap configuration .

86% reduction with dual flap configuration
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“Results: BO-105 Vibration Reduction

m Noise generation during vibration reduction
NO noise increase on advancing side
1-2dB increase on retreating side

Baseline Simulation Vib. Red’n, 1 Flap, Saturation Limits Vib. Red’n, 2 Flaps, Saturation Limits
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Results: BO-105 Noise Reduction

m Noise reduction with adaptive HHC algorithm
~1 5-6dB reduction on advancing side
1 2dB increase on retreating side

Baseline Simulation Noise Red’n, 1 Flap, Saturation Limits  Noise Red’n, 2 Flaps, Saturation Limits
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Results: BO-105 Noise Reduction

m Vibration levels during noise reduction
Unchanged for single flap configuration o
130% increase for dual flap configuration

Vertical shear always reduced £ _
v W
&
0.0020 1 _ -5
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= O NR, Single Flap, Saturation -10°
T 0.00154 B NR, Dual Flaps, Saturation o Azimuth 3607
g [a) Single Flap
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-
= 0.0010
-
=
E 5
2 0.0005 1 3
£ ]
2 1 d 1
= 0,000 T T T T T Sl
FHX4 FHY4 FHZ4 MHEA MHY4 MHZ4 — Inboard Flap
. 1o°, ~ - Outboard Flap
4/rev vibratory loads o Agimuth 360°
(b) Dual Flaps

Flap deflection
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“Results: BO-105 Simultaneous Reduction

m 3-5dB noise reduction and 40% vibration reduction

m Demonstrates the potential for simultaneous reduction
Deliberately instead of coincidently

Baseline Simulation Simul. Reduction, 1 Flap, Saturation Simul. Reduction, 2 Flaps, Saturation

(1]
Crossflow Position Y/R
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Results: BO-105 Simultaneous Reduction

m 40% vibration reduction
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Results: BO-105 Additional Flap Inputs

m Traditionally the flap harmonic inputs are taken to be a combination of

2-5/rev components

m The effects of constant (O/rev) and 1/rev flap harmonic inputs for BVI noise

reduction are examined

1 Not appear to have significant effects

Baseline Simulation NR, 1 flap, 0 & 2-5/rev, Saturation

NR, 1 flap, 1 & 2-5/rev, Saturation

g é /
i
§S5E3E3S3332RE3EES

- (o) Single flop, 0 & 2-5/rev (b) Single Aap, 1 & 2-5/rev

r Agimuth o o Asimuth 360°
(¢} Dual flaps, 0 & 2-5/rev id} Dual flaps, 1 & 2-5/rev



Results: MD-900

m Five-bladed bearingless rotor

N, R(m) u C2(RPM) C; c/R o
5.16 0.20 392 0.006 0.04924 -3.5°

5

m \Wind tunnel trim
1 Simulated descent condition

m Flap configuration % |
1 Developed in Boeing SMART program =y
NG

Single Plain Flap ?L% niz'x'. iﬂE

m  Active control with 4° saturation
=1 Vibration reduction
1 Noise reduction
1 Simultaneous reduction

e .
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m Flap overhang (aerodynamic balance)

¢, Flap Overhang

Flap Hinge
m Flap hinge moment reduced using 40% overhang
m Control power requirement reduced by an order of magnitude

6 50 - - - - - w/o overhang
——  CAMRAD Il with 40% OH 45 ‘ « [ 40% owerhang
41 — —  Simulation with 40% OH 5 40 ‘ : :
K] ----  Simulation w/o OH o ]
f- 5 g 35
£ ~ & 30 -
§ T TR it C— g
s 'T7 A N —] g 25
E’ Coe 8 20 -
827 e T £ 154
4 /. 2 07 A
05 { : /\ oA L A
5 : : ‘ i AN WAL /\ AN /\
0 el 180 270 360 0 90 180 270 360
Azimuth, deg Azimuth, deg

Flap hinge moment Instantaneous control power
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_Results MD-900 Vibration Reduction

m 60% vibration reduction

m 1dB noise increase

Baseline Simulation

Vibration Reduction

Streamwise Position X/R .

o
Crossflow Position Y/R

0
Crossflow Position Y/R

BVI
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107
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Flap deflection
0.0020 1 .
. s Baseline
L oVibration Reduction
g 00005 -
=
B
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£
E 00005 -
z
00000~ E v TFHZE MG T M Rz

5/rev vibratory loads



\&‘ﬂ”ﬂ;,/? _ Py MichiganEngineering
““Results: MD-900 Noise Reduction

m 3dB BVI noise reduction - Noise Reduction
m NO noise penalty on retreating side |
. . . g
m 150% vibration increase g /\M
&0
£
-5°F
Baseline Simulation R Noise Reduction B |
0 Azimuth 360°
A/ 6 Flap deflection
£ lg wBoseline
% .% E g oot oNeise Reduction
: . o B
1 103 |2 00010
| e
(\/\ 100 ;51 0,000
AENS = -
-Il Crossflow I?osition ‘Ir/R ; ' -Il Crolssflow ;Iaosiﬁon ‘Ir/I! ; om0 FHKS I FHYS I FHLS m . MHYS MHZ5

5/rev vibratory loads
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“Results: MD-900 Simultaneous Reduction

74% reduction in vertical shear Fimhoneous Reduction
1dB noise reduction

ACF appears less effective in simultaneous
reduction than in the MBB BO-105 case

3
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Flap Deflection
q.

-5°
Baseline Simulation Simultaneous Reduction -
0" Azimuth 3607
BVI )
A/‘ 17 Flap deflection
-1 -1
RN = N=1 i
.E ;é I 0.0020
2 f 2, 1ol g uBaseline
rag 16 BE 108| B o Simul. Reduction
3 s H 107 |2 0.0015
E £ 106 | =
9 A 9 es | B
‘E @ ﬂ 2 . 103 -E L0010
T 103 | = .
107 101 |
108 L 100 &
E M _g 00,0005
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Crossflow Position Y/R Crossflow Position Y/R

5/rev vibratory loads



“"Results: MD-900 Passive Approach

m Advanced geometry tips
10° sweep
10° dihedral (tip up)
10° anhedral (tip down)
m Alleviation of BVI effects through increased separation distance

m BVI effects are alleviated for anhedral and enhanced for dihedral
for level flight condition (de Terlizzi & Friedmann,1999)

Swept Tip



“"Results: MD-900 Swept Tip — Descent

m -3.5°tip path plane angle, simulating descending flight
m 10° dihedral

0.0020 - W Easeling

40% reduction in vertical shear g % A" sweep

§o o
m 10° anhedral f %
. . . > 0.0010 - N
34% increase in vertical shear £ %
_ N
= 10° sweep J oo \
3 D

0.0000

Negligible effects

- ™ £l
FH*S FHYS FHZS MH*S MXYS MHXS

Baseline Simulation R 10° Sweep

Streamwise Position X/R |
, o
Streamwis
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“"Results: MD-900 Swept Tip — Level Flight

m 2°tip path plane angle, simulating level flight
m 10° dihedral

00020 - H Baseline
50% increase in vertical shear g 210" sweep
_ _ % ooors | [ Z 7 1D°d|hedral
3dB noise increase i ;& gﬁ E 107 anhedsal
= 10 [l A ™
= 10° anhedral o
. . . 7N N 7N
25% reduction in vertical shear E 0.0005 - gg 5% E%
. . N A B A
2dB noise reduction oonoo MLEN BN BN morss WS s
. . FH¥E FHYS FHZS MHZS [E MHXE
m  Agrees with the results in de Terlizzi & Friedmann, 1999
Baseline Simulation N 10° Sweep . 10° Dihedral . 10° Anhedral
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Conclusions
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The ACF is an effective device for vibration and BVI noise reduction
In rotorcraft, for different types of rotors and different helicopter
configurations.

The effectiveness of the ACF system has been clearly demonstrated
despite imposing a practical flap saturation limits of 4°.

The addition of constant and 1/rev flap harmonic input to the
harmonic content of flap deflection does not have significant effects
on BVI noise reduction, for the active flap systems employed on a
rotor that resembles the MBB BO-105 rotor.

Using a substantial flap overhang is a very effective means of
reducing the flap hinge moment, thus further reducing the actuation
power requirement for the ACF system.

A passive approach employing tip anhedral or dihedral is effective at
alleviating the BVI effects. However, this reduction depends on the
flight condition.

The ACF provides superior vibration and BVI noise reduction
compared to the passive approach.



